Skip Navigation

HPRC Short Course: Introduction to Scientific Machine Learning

March 26, 2021

1:30 pm - 4:00 pm

Online via Zoom

HPRC SciML Short Course (Registration Link Inside)

Instructor: Jian Tao

Location: Zoom session only (registration required)

Prerequisites: Julia, basic understanding of partial differential equations and numerical methods.

Scientific Machine Learning (SciML) is an emerging area that brings together the fields of Machine Learning and Scientific Computation. SciML introduces scientific model constraints in Machine Learning algorithms, allowing prediction of future performance of complex multiscale, multiphysics systems using sparse, low-fidelity, and heterogeneous data. Unlike traditional black-box Machine Learning methods, SciML aims to deliver interpretable models, leading to improved verification and validation in mission-critical applications.


This course focuses, among others, on the following topics:

  1. Brief introduction to scientific machine learning (SciML) methods
  2. Open source SciML software packages in Julia
  3. Introduction to the NeuralPDE.jl package, which utilizes deep neural networks and neural stochastic differential equations to solve partial differential equations.